
Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2233-2239 (2014) ISSN : 0975-0290

2233

Software Defined Networking: A Concept and
Related Issues

Deepak Kumar
Department of Computer Science, Himachal Pradesh University, Shimla

Email: deepak.cs339@gmail.com
Manu Sood

Department of Computer Science, Himachal Pradesh University, Shimla
 Email: soodm_67@yahoo.com

---ABSTRACT---
SDN (Software Defined Networking) is the networking architecture that has gained attention of researchers in
recent past. It is the future of programmable networks. Traditional networks were very complex and difficult to
manage. SDN is going to change this by offering a standard interface (OpenFlow) between the control plane and
the networking devices (data plane). Its implementation is fully supported by software so that we can control the
behavior of networking devices through programmatic control. This programmatic control provides various new
ways to find breakpoints and failures in networking devices. Today SDN has become an important part of
networking, so it is important to emulate its behavior. SDN support virtualization which makes it scalable and
flexible. Data traffic resides in the data plane. The main function of intelligent controller is to decide the routing
policy and manage the traffic in data plane. So effectively SDN emerges as a networking architecture that has the
ability to solve all problems those were found in traditional architecture In this paper the authors discussed
historical perspective of SDN, languages that support SDN, emulation tools, security issues with SDN and
advantages that makes SDN suitable choice for today’s network.

Keywords - OpenFlow, Security, Software Defined Networks, Virtualization.

Date of Submission: September 01, 2014 Date of Acceptance: October 10,2014

1. INTRODUCTION

The Software Defined Networking (SDN) is a new
networking approach. The traditional networking
architectures are not capable of fulfilling the changing
needs and requirements of networking organizations and
individual users. In traditional network it is very difficult
to manage the network because network consists of
heterogeneous hardware devices that support different
protocols. SDN paradigm helps us to solve these problems
by enabling the separation of the control plane from data
plane. The concept of decoupling the control and data
plane is not new, it has taken from early researches during
early 2000[1].

SDN is a new emerging networking architecture and
provides the platform for the development or innovation of
new services. The advantage of separating the control
plane is that we can develop the control plane in software
and can change the functionality of the hardware devices
whenever needed. Early network used the 4D [2] and
ethane [3] approach for the network control and
management. To make the scalable network the
architecture must be able to provide local controller. The
main function of the local controllers is to run the
applications close to underlying switches [4].

To make any network scalable it must support
virtualization and the SDN is a natural platform to support
for virtualization [5]. We have various available
controllers for SDN such as Beacon, NOX, POX, Onix,

and Floodlight [6, 7, 8, 9, and 10]. The choice of particular
controller depends upon the experience and knowledge of
networks operators. SDN is fully programmable and
whole intelligence lies in the centralized controller. There
are number of available programming languages like
Frenetic, FML, Procera, Flog and Pyretic to code for the
intelligent controllers. The centralized intelligent
controller is abstracted from the hardware devices that
work on the data plane.

The main function of the centralized controller is to
manage the hardware devices through programmatic
control. Through controller we can modify the behavior of
hardware devices by changing the logic code of
centralized controller.

It is not possible for switches to pre-install all rules,
because we use only one rule at a time and also switches
do not have enough memory space. As controller decides
particular routing policy, it implements that policy by
instructing the switches to install that policy [12]. These
rules and policies are based on the HFT (Hierarchical
Flow Table) [11]. These policies help us to determine
whether to forward the packet or to drop the packet by
comparing the packet based on the values stored in the
flow table.

Int. J. Advanced Networking and Applicatio
Volume: 6 Issue: 2 Pages: 2233-2239 (20

Figure 1: Software Defined Networking A

There are also some issues regarding
controllers are needed for network architec
more scalable and flexible. OpenFlow [12
component of SDN architecture. OpenFlow
which enables the separation of control a
which makes SDN more flexible. OpenFl
interface between the control and physi
allows the controller to configure the har
programmatically. This paper includes Se
describe how SDN evolves and its histo
includes virtualization and SDN. Section
languages for SDN to make it programma
describes scalability and SDN. Section 6 d
for SDN. Section 7 describes advantages of
8 describes issues with SDN. Finally w
Section 9.

2. EVOLUTION OF SDN
The concept of programmable networks
resembles the early research. It has emerg
that were used in early telephony network
grows the traffic across networks also gr
traditional network it was difficult task t
network performance, reliability etc. So the
of approaches that can provide be
management (e.g. how to manage the traff
node in a network).

Also traditional network involves the coup
and data plane, which makes network
difficult. So it gives researchers an idea of
control and data plane, so that we can de
scalable, reliable networks. The same con
follows in today’s SDN architecture. Open
approach which helps SDN to change
network were previously operated. In th
discuss the previous networking researche
scalable networking architecture known as S

ons
14) ISSN : 0975-0290

Architecture

g how many
ture to make it
2] is important
w is a protocol
and data plane,
low acts as an
ical layer that
rdware devices
ection 2 which
ory. Section 3
n 4 describes
able. Section 5
describes tools
f SDN. Section

we conclude in

is not new, it
ged from ideas
ks. As network
rows. In early
to manage the
ere were needs
etter network
fic across each

pling of control
k management
f separating the
evelop flexible,
ncept we have
nFlow is a new

the way how
his section we
es that lead to
SDN.

2.1. 4D Projects
It is an architecture which includes
discovery, decision and disseminatio
giving the “decision” plane a centr
network and provides network level o
configure the forwarding plane devic
provides the robust communication ac
devices in data plane. “Discovery” pro
hardware devices to find out its own
environment. “Data” plane for forward
underlying hardware switches.

2.2. Active Networking
It emerged during 1990s when researc
new programming concepts in the t
which enable greater chances of inn
network architecture used the progra
Environment for Network Innovation
Future Internet Design (NSF FIND) [1

2.3. Ethane
It allows the network operator to a
policy. Ethane can be implemented in
software [3]. Ethane provides the com
two end hosts by allowing the accur
policies studied in ethane are depen
header fields defines the flow based on

3. VIRTUALIZATION AND SDN
Virtualization is the key feature for t
SDN is a natural platform to sup
Network virtualization provides us t
logical links and virtual networks that
the hardware devices [15]. Today’s
dependent on network virtualization
only through the decoupling of cont
Network virtualization provides each
with its own network topology and co
of packet traffic [5].

Table 1: Controller that support Op

We have various controllers that su
such as NOX, FlowN, Maestro [1
FloodLight and Onix. FlowN is built
of NOX and it make SDN scalable
illusion of running the separate contr
Running separate controller for each h
is very costly process. FlowN fully su

2234

s four planes: data,
on [2]. It proposed
ralized view of the
objective in order to
ces. “Dissemination”
cross each hardware
ovides ability to each

resources and local
ding of packet across

chers introduced the
traditional networks
novations [1]. Early
ams such as Global
ns (GENI) [13] and
4].

apply network wide
n both hardware and

mmunication between
rate permission. All
nds upon flows and
n the type of packet.

the success of SDN.
pport virtualization.
the ability to create
t are separated from
networks are fully

and this is possible
trol and data plane.

h tenant in networks
ontrol over the flow

penFlow standard

upport virtualization
16], Beacon, POX,
as upgraded version
e by providing the
roller for each host.
ost is not possible, it
upport the container

Int. J. Advanced Networking and Applicatio
Volume: 6 Issue: 2 Pages: 2233-2239 (20

based virtualization and the standard A
controller to provide interaction between th
virtual networks. SDN allows each tenant
rules and policies on controller rather t
devices. The main focus point of network v
to utilize the existing network resources s
logical instances of networks which are
virtual nodes [17] [18]. FlowVisor [19] i
popular approach based on SDN to instant
links and networks. FlowVisor has the abilit
guest controllers i.e. one controller for each
which separated from each other. Each tena
controller contains many fields in packet h
source IP address, destination IP address an
etc. FlowVisor not fully utilizes the virtualiz

Table 2: SDN Controller Functiona

VeRTIGO [20] which is the extension of
fully covers all the flavors of network
VeRTIGO interacts with controller an
hardware switches through control channel
Classifier, Node Virtualizer, Port Map
Controller, Storage and VT Plann
virtualization is nearly comparable t
virtualization. NVP (Network virtualizatio
the first network virtualization platform
Nicira [21] in Feb, 2012. NVP provides u
that allows the extensible creation of the v
and that is fully abstracted from the hardw
Table 1 we have various controllers f
developers that work on different platform
most of them are open source. In Table 2 w
the various controller functionality and their

ons
14) ISSN : 0975-0290

API allows the
he physical and
to run its own
than hardware
virtualization is
such as several

composed of
s one of most

tiate the virtual
ty to host many
h slice, each of
ant that runs on
header such as
nd port number
zation.

alities

f FlowVisor, it
virtualization.

nd underlying
which includes
pper, Internal

ner. Network
to VMware’s

on Platform) is
introduced by

us the platform
virtual network

ware devices. In
from different

m platforms and
we have shown
r benefits.

4. LANGUAGES FOR SDN
Conventional networks were built
heterogeneous hardware devices, eac
distributed algorithm and protocol t
rules and policies, topology informati
and traffic monitoring services etc. It
for the network operators to prov
among them. Whenever we want to
device from network, we have to chan
it is very time consuming process.
As traditional networks consisted of
data plane which limits the flexibility a
the advent of new networking archit
provides the platform to develop
interface on which application run
possible for programmers to control
abstracted hardware devices thro
control.
Most of the controller such as NOX [7
[16], and Beacon [6] provides the prog
that enables the programs to react to n
arrival of packet, drop of packet, and
etc. Early network protocols and ove
use logic programming like NDlog [23
One of the main logic programming fo
(Flow Management language) [22]. It
formalism for OpenFlow networks [28
based and its main focus is to write rul
a domain specific high level langu
various built in rules and policies that
making decision allow or deny the cer
Another language FRENETIC [25]
language for programming heterogen
network hardware devices.
FRENETIC is a combination of
language, functional stream langu
language [22]. Pyretic [26] is also
allows the programmers to specify
policies at a high level of abstr
component of Pyretic is the abstract p
Log is a programming language for S
declarative language. FlowLog [27] pr
collection of concrete table that
relational database. Flow-Log is refin
Flow-Log programs can access the
controller and also have ability to
modification to the packet field. Flow
non-recursive datalog.

5. SCALABILITY AND SDN
In SDN the centralized controller prov
of the network and has direct contro
devices in data plane. As we know net
underlying switches and the centrali
main function of the switch is to forwa
on the rules and policies stored i
Centralized controller controls the und
setting up the rules and policy. Packet
policies are installed in hardware devic

2235

t of collection of
h of which running
that possess access
ion, routing policies
is very difficult task

vide communication
add or remove any

nge whole setup and

coupled control and
and scalability. With
tecture, i.e. SDN, it

the programmable
ns. SDN makes it
the behavior of the

ough programmatic

7], POX [8], Maestro
grammable interface
network events such
d link status update
erlay networks [22]

3], Overlog [24].
or controller is FML
provides rule based

8]. FML is a datalog
les and policies. It is

uage. It consists of
t are responsible for
rtain flow of packet.
] is a high level
neous collection of

declarative query
uage, specification
new language that
networks rules and
raction. The main
packet model. Flow-
DN controllers, it is

rograms are simply a
are comparable to
nements of datalog.
current state of the
o make continuous
w-Log programs are

vides the global view
l over the hardware
twork consists of the
ized controller. The
ard the packet based
in the flow tables.
derlying switches by
processing rules and
ces in two ways: one

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2233-2239 (2014) ISSN : 0975-0290

2236

way is that switches decide their routes themselves
(known as reactive) and other way, when first packet
comes across ingress port. Ingress port send packet to the
controller and then controller decides which route switches
have to follow (known as proactive). Configuring the
hardware devices through programmatic control makes the
SDN flexible. But question comes, how we can make SDN
scalable.

We have various option of controller like NOX, FlowN,
FlowVisor and Beacon etc. One of most commonly used
controller is NOX. All of these controllers provide the
programmable interface that supports a low-level and
event based model in which programs control the task of
arrival of packet, to drop the packet, or to forward the
packet based on the decision made by the centralized
controller. To make control plane scalable we must have
better choice of controller such as ElastiCon [28]. Early
controllers support the static mapping between the
forwarding hardware devices and the intelligent controller
where as ElastiCon support the dynamic mapping between
the underlying switches and the controller.

We can make SDN scalable by keeping the packet traffic
in the data plane [29] that is abstracted from the controller
in control plane. In order to efficiently handle the traffic
flow, the switches must be able to take decision where to
forward the packet. This is possible by having firmware
installed in switches with silicon chips and inbuilt buffer
storage. These switches are smart enough for making any
decisions. When a packet arrives across switch in a
network, the rules installed in the switches firmware tell
the switch where to forward the packet. These switches are
based on ASIC’s (Application Specific Integrated
Circuits). Firmware is inbuilt software (set of programs) in
switches which provides the ability to communicate with
centralized controller.
These switches also contain CPU to handle the data plane
traffic [30]. The CPU contains the complete forwarding
tables. Also other factor that makes SDN scalable is the
ability of faster failure recovery. The programming
language that support fast failure recovery is FatTire [31].
The most common and basic requirement of any network
is the ability to tolerate and recover from failure. Same
requirements are needed for SDN. In SDN we
automatically recover from failure through centralized
controller. Whenever the failure take place or switch stops
working SDN is capable of changing the flow of traffic
through programmatic control. To recover from failure in
seconds the network must support multiple routing paths
and must also be able to work with any kind of networking
topology [32].

6. TOOLS FOR SDN
SDN is a new paradigm that facilitates the development of
networks. In this section we provide introduction to SDN
based tools such as emulators.
6.1. Mininet
Mininet [33] is an emulator that allows network to be
emulated on single computer system. It configures and

runs the same things that we find on real network such as
links, switches, servers and packets. The emulated server
runs logic codes rather than events. Emulator provides the
artificial environment with artificial traffic comparable to
the real network environment. Mininet is container based
emulator (CBE) and support process level virtualization,
which is lighter form of virtualization. Other examples of
container based emulators are Netkit [34], CORE [35] and
trellis [36].
6.2. DieCast
DieCast [39] is very closer to the behavior of actual
network and it uses very less no. of physical resources.
Large network includes thousands of devices runs
heterogeneous protocols and software configurations that
are distributed across hundred of physical networks.
DieCast does not focus on scaling of hardware resources
like main memory and disk etc.
6.3. ModelNet
ModelNet [37] is a scalable emulator that provides the
emulation of the network at a large scale. The main point
that makes ModelNet different from other emulator, it
focuses on the emulation of large topology of networks. In
ModelNet we require lesser resources to emulate network
[38]. The ModelNet includes five phases: Create, Distill,
Assign, Bind and run. The emulation in ModelNet is based
on real time therefore each packet come across the
emulated network with equal time interval, with same
delay and same rate of loss of packet as the actual
network.

7. ADVANTAGES OF SDN
Early networks were not built to meet the today’s rapidly
changing requirements. Everything is evolving except the
networking architecture. SDN has the ability to overcome
the problems of conventional networking architecture.
SDN networks are easily scalable as network grows
because SDN provides us with the programmable
interface. Networking hardware devices are increasing
day-by-day that results in network growth, so for
traditional network it is very tedious and costly task to
configure all hardware devices manually. SDN is fully
implemented in software and therefore it support
programmable control to configure the hardware devices.
Following are some of advantages of SDN:

7.1. Global View
SDN provides the global view of the network that helps us
to simplify the network configuration, management and
makes it available to the user who wants to use it.

7.2. Flexible Traffic
The main functionality of the intelligent controller is to
programmatically configure hardware devices which
makes the SDN flexible and more agile. Also we can
change the functionality of controller according to change
in traffic.

7.3. Easily Programmable
In SDN, control plane is easily programmable because it is
separated from the data plane. Whenever we have to make

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2233-2239 (2014) ISSN : 0975-0290

2237

changes, we can change the functionality of control plane
by changing the logic programming in control plane.
7.4. Programmatically Configurable
As SDN is fully implemented in software and it therefore
configures the hardware devices through programmatic
control. When the controller decides to implement
particular policy, it instructs the hardware devices to
install that packet forwarding policy through
programmatic control.
7.5. Faster Failure Recovery
SDN support virtualization which provides end-to-end
connectivity between links and node across network. So
failure handling is much faster, the controller
automatically checks for failure and handle them
accurately.
7.6. Platform for Innovation
As SDN is a new networking paradigm, the separation of
data and control plane which enables the chances for
innovation of new applications and services.

8. RESEARCH RELATED ISSUES WITH SDN
SDN is a new concept in networking field. As SDN has
advantages, there are also some issues. SDN consists of
three layers where each layer requires its own level of
protection. Centralized controller acts as the standard
interface for the interaction between the applications and
switches that works on the top and bottom layer of SDN
architecture. The bottom layer includes network virtual
device which is the emulation of physical switches. So we
need some mechanism to secure the controller and
network virtual device [40]. Also emerging networks are
facing the problem of how to attain security to protect the
enterprise as well as user data. The concept of
virtualization has enabled new threats that must be
addressed. Therefore the authors next presents account of
the issues related to the security of SDN. They have
segregated these issues into three categories as detailed
below.

8.1. Virtualization Security Issue
Networking industries are stepping forward to support for
virtualized applications with different risk factors on a
single server. In virtualized networks packet traffic does
not flow through physical network [41]. There are no
obvious ways to manage or control the data traffic in
virtualized networks. There are various services like
firewalls, IDS, QOS etc. These services are of no use in
virtualized networks. If the attacker in the one virtual
network is able to detect the other virtual networks then it
must destroy the illusion of separation [41]. The weaker
network security makes the virtual network vulnerable. In
order to prevent network from an attacker, we have some
of solutions as given below.

Solution:
The layer and boundaries that manages and control the
virtual network must be well secured. So we need some
additional security for virtual networks like virtualized
firewall which includes IPS, anti-malware, URL filtering
and content blocking to control the threats. In SDN we can

make virtual machine secure by providing additional
security layer to the hypervisor. Some following schemes
can be used to make virtual networks secure.
8.1.1. Worm Detection
Worms are serious threat to the networking infrastructure.
They spread across network from one host to another in
continuous manner. There are some techniques for the
detection of worm and defend against worms. For worm
detection we use the behavioral approach, automatic
detection of worm is very challenging because it is
difficult to predict what would be the next form of worm
[42]. Another approach for the worm detection is the multi
resolution approach [43] and threshold based mechanisms.

8.1.2. Intruder Detection
One of most important part of network security is the
NIDS (Network Intrusion Detection System). It provide us
the layer which help us to monitor the data traffic and
identify the suspicious activity, whenever found it instruct
the administrator to take some suitable action. SNORT
[44] is a packet sniffer that is used for NIDS. SNORT
helps to identify various attacks like buffer overflows, CGI
attacks and Server Message Block probe etc.

8.2. Controller Security Issue
Control plane controller has offered several benefits to
configure the networks. But there also some security
issues related with controller. SDN centralized controller
potentially have risks and threat compared to the
conventional network architecture. What if an attacker
tries to modify or hack the hardware devices in data plane?
SDN is fully dependent on the intelligent controller, so we
need some security mechanism to protect it from attacker.
The southbound interface between the control plane and
data plane is sensitive and without any security services, it
affect the performance and integrity of the network [45].
So without security network becomes inefficient.

Solution:
Whenever attacker tries to change the functionality of
underlying hardware devices or tries to capture
information from the data packet, the centralized
controller can restrict attacker by modifying the data path.
We can make SDN controller secure using following
security approaches:
8.2.1. FortNOX
FortNOX is the policy enforcement kernel. FortNOX [47]
extends of NOX [7] controller by providing policy based
flow rule enforcement. FortNOX support role based
OpenFlow applications authentication through digital
signatures. FortNOX enables NOX [7] to check flow rule
contradiction in real time. It also uses the conflict
resolution policy to accept or discard the rules.
8.2.2. FRESCO
FRESCO is a new security application development
framework [46]. The main purpose of the FRESCO is to
identify the various issues that speed up the composition
of OpenFlow enabled security services. Various security
applications can be easily implemented with FRESCO
framework. Application layer and the security

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2233-2239 (2014) ISSN : 0975-0290

2238

enforcement kernel are the main components of the
FRESCO and both are the integral part of the NOX [7]
controller. The basic operating unit in FRESCO
framework is known as module. FRESCO application
extended through FRESCO API’s to provide two
developer functions:

• Development environment.
• Resource controller.

8.3. Controller Placement Problem
SDN architecture placed the control logic over the external
controller that helps us to configure the packet forwarding
devices in data plane. This architecture with separate
control plane improves the scalability, reliability and
performance which were not possible in traditional
architecture. There are many problems that occur in
controller placement are as follows:

� How controller placements affect latency?
� How many controllers are needed?

Solution:
The solution to above problems is to have a single
centralized controller. One controller location is sufficient
to meet the requirements of network topology. As we use
the no. of controllers, it becomes difficult to manage them
and also it is very costly to have more than one controller.
Also controller should be placed so that we have minimum
latency that results in efficient networks.

9. CONCLUSION
SDN provides us the new way to implement networking.
This paper describes how SDN architecture is the suitable
approach to meet the rapidly changing requirements of
networking organizations and customers. Fully
programmatic functionality of SDN makes it flexible and
hence scalable.
In traditional networks it is impossible to achieve
scalability and flexibility. The centralized controller can
change the functionality of hardware devices by changing
the routing policy through programmatic control. We do
not need to change the hardware set up with changes in
requirements. SDN is the latest concept in networking
industries. It enhances the scope for further development
in networking. It is the future of networking which allows
us to build the cost effective and agile networks. As in
SDN the whole dependence lies on the intelligent
programmable controller that is on one hand beneficial for
management and control purposes but it also has
drawbacks, because controller is the main target for the
attacks.
Also virtual network in SDN does not have security layer
to protect the network where as traditional networks are
secure because we have various choices to protect network
such as firewall, IDS, worm detector etc. SDN OpenFlow
[12] interface is also vulnerable from security point of
view. Also it has other issues like whether the
functionality will reside in the control plane or both (data
or control plane).

REFERENCES
[1] Nick Feamster, Jennifer Rexford, Ellen Zegura, The

Road to SDN: An Intellectual History of
Programmable Networks. ACM SIGCOMM, Volume
44 Issue 2, 2014, 87-98

[2] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A.
Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H.
Zhang, A clean slate 4D Approach to network control
and management. ACM SIGCOMM Computer
Communications Review, 35(5), 2005, 41–54.

[3] Martìn Casado, Michael J. Freedman, Justin Pettit,
Jianying Luo, Nick McKeown, Scott Shenker,
Ethane: Taking Control of the Enterprise.
SIGCOMM’07, 2007, 27–31.

[4] Soheil Hassas Yeganeh, Yashar Ganjali, Kandoo: A
Framework for Efficient and Scalable Offloading of
Control Applications. HotSDN’12, 2012.

[5] D. Drutskoy, E. Keller, and J. Rexford, Scalable
Network Virtualization in Software-Defined
Networks. IEEE Internet Computing, 2013

[6] David Erickson, The Beacon OpenFlow controller. In
Proc. HotSDN 2013.

[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben
Pfaff, Martin Casado, Nick McKeown and Scott
Shenker, NOX: Towards an Operating System for
Networks. ACM SIGCOMM Computer
Communication Review, Volume 38 Issue 3, 2008.

[8] POX [ONLINE] Available at:
http://www.noxrepo.org/pox/about-pox/

[9] Teemu Koponen, Martin Casado, Natasha Gude,
Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv
Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, Scott Shenker, Onix: A Distributed
Control Platform for Large Scale Production
Networks. In OSDI 10, 2010.

[10] Floodlight, [ONLINE] Available at:
http://floodlight.openflowhub.org/

[11] Andrew D. Ferguson, Arjun Guha, Chen Liang,
Rodrigo Fonseca, Shriram Krishnamurthi,
Hierarchical Policies for Software Defined Networks.
HotSDN’12, 2012.

[12] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner, OpenFlow:
Enabling innovation in campus networks. SIGCOMM
CCR, 38(2): 2008, 69–74.

[13] GENI (Global Environment for Network
Innovations) [ONLINE] Available at:
http://www.geni.net/

[14] NSF Future Internet Design [ONLINE] Available at:
http://www.nets-find.net/.

[15] [ONLINE] Article available at:
http://www.sdncentral.com/whats-network-
virtualization/.

[16] Zheng Cai, Alan L. Cox, T. S. Eugene Ng, Maestro
:A System for Scalable OpenFlow Control, Rice
University Technical Report TR10-08, 2010.

[17] E. Keller and J. Rexford, The ”Platform as a Service”
model for networking. In Proc. of USENIX
INM/WREN, San Jose, California, 2010

Int. J. Advanced Networking and Applications
Volume: 6 Issue: 2 Pages: 2233-2239 (2014) ISSN : 0975-0290

2239

[18] M. Casado, T. Koponen, R. Ramanathan, and S.
Shenker, Virtualizing the network forwarding plane.
In Proc. of ACM, PRESTO, Philadelphia, USA, 2010.

[19] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido
Appenzeller, Martin Casado, Nick McKeown and
Guru Parulkar, Can the Production Network Be the
Testbed?. In Operating system Design and
Implementation, 2010.

[20] Roberto Doriguzzi Corin, Matteo Gerola, Roberto
Riggio, Francesco De Pellegrini, Elio Salvadori,
VeRTIGO: Network Virtualization and Beyond. In
EWSDN, 2012, 24-29

[21] Nicira, “Network virtualization platform”, [ONLINE]
Available at: http://nicira.com/en/network-
virtualization-platform.

[22] Naga Praveen Katta, Jennifer Rexford, David
Walker, Logic programming for Software-defined-
Networks. Princeton University.

[23] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica,
and Raghu Ramakrishnan, Declarative routing:
Extensible routing with Declarative Queries. In
Proceedings of SIGCOMM ’05

[24] Boon Thau Loo, Tyson Condie, Joseph M.
Hellerstein, Petros Maniatis, Timothy Roscoe, and
Ion Stoica, Implementing Declarative Overlays. In
Proceedings of SOSP, 2005.

[25] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, Frenetic: A
network Programming Language. In ACM SIGPLAN
International Conference on Functional
Programming (ICFP), 2011.

[26] Christopher Monsanto, Joshua Reich, Nate Foster,
Jennifer Rexford, David Walker, Princeton Cornell,
Composing Software-Defined Networks. 10th
USENIX Symposium on Networked Systems Design
and Implementation, 2013.

[27] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi
Fisler, Shriram Krishnamurthi, A Balance of Power:
Expressive, Analyzable Controller Programming.
HotSDN’13, 2013.

[28] Advait Dixit, Fang Hao, Sarit Mukherjee, T .V.
Lakshman, Ramana Kompella, Towards an Elastic
Distributed SDN Controller. HotSDN’13, 2013.

[29] Minlan Yu, Jennifer Rexford, Michael J. Freedman,
Jia Wang, Scalable Flow-Based Networking with
DIFANE. SIGCOMM’ 10, 2010, New Delhi, India.

[30] Guohan Lu, Rui Miao, Yongqiang Xiong,
Chuanxiong Guo, Using CPU as a Traffic Co-
processing Unit in Commodity Switches .
HotSDN’12, 2012.

[31] Mark Reitblatt, Marco Canini, Arjun Goha, Nate
Foster, FatTire: Declarative Fault Tolerance for
Software-Defined Networks. HotSDN’13
Proceedings of the second ACM SIGCOMM
workshop on hot topics in Software Defined
Networking, 109-114

[32] H. Kim, M. Schlansker, J.R. Santos, J. Tourrilhes, Y.
Turner, N. Feamster, CORONET: Fault tolerance for
Software Defined Networks. In Proceedings of ICNP.
2012, 1-2.

[33] Bob Lantz, Brandon Heller, Nick McKeown, A
Network in a Laptop: Rapid Prototyping for
Software-Defined Networks. In HotNets. ACM, 2010.

[34] M. Pizzonia, M. Rimondini, Netkit: easy emulation
of complex networks on inexpensive hardware. In
International Conference on Testbeds and research
infrastructures for the development of networks &
communities, TridentCom '08, Pages 7:1{7:10,
Brussels, Belgium, 2008. ICST.

[35] J. Ahrenholz, C. Danilov, T.R. Henderson, and J.H.
Kim, CORE: A real-time network emulator. In
Military Communications Conference, MILCOM '08,
1 IEEE, 2008

[36] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada,
V. Valancius, A. Bavier, N. Feamster, L. Peterson, J.
Rexford , Trellis: a platform for building flexible, fast
virtual networks on commodity hardware. In
CoNEXT '08, pages 72:1{72:6. ACM, 2008.

[37] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya
Mahadevan, Dejan Kostic, Jeff Chase, David Becker,
Scalability and Accuracy in a Large-Scale Network
Emulator.

[38] Arjun Roy, Kenneth Yocum, and Alex C. Snoeren,
Challenges in the Emulation of Large Scale Software
Defined Networks. University of California, San
Diego.

[39] Diwaker Gupta, Kashi V. Vishwanath, and Amin
Vahdat, DieCast: Testing Distributed Systems with
an Accurate Scale Model. ACM Transactions on
Computer Systems 29, 2011, 4:1-4:48.

[40] Kapil Dhamecha, Bhushan Trivedi, SDN Issues- A
Survey. International Journal of Computer
Applications (0975-8887), 2013, 73-18.

[41] Wang, Anjing et al., Network Virtualization
Technologies, Perspectives and Frontiers. Journal of
Lightwave Technology 31.4 (2013): 523-537.

[42] Daniel R. Ellis, John G. Aiken, Kira S. Attwood,
Scott D.Tenaglia, A Behavioral Approach to Worm
Detection. In Proceedings of WORM, 2004.

[43] Vyas Sekar, Yinglian Xie, Michael K. Reiter, Hui
Zhang, A Multi-Resolution Approach for Worm
Detection and Containment.

[44] M. Roesch, Snort - Lightweight Intrusion Detection
for Networks. In Proceedings of USENIX Large
Installation System Administration Conference
(LISA), 1999.

[45] Security Implication in Data Center [ONLINE],
Available at
https://www.opennetworking.org/solution -brief-sdn-
security-considerations-in-the-data-center

[46] Shin, Seugwon, et al., FRESCO: Modular
Composable Security Services for Software-Defined
Networks. To Appear in the ISOC Network and
Distributed System Security Symposium 2013.

[47] Porras, Philip, et al., "A security enforcement kernel
for OpenFlow networks", Proceedings of the first
workshop on Hot Topics in software defined
networks. ACM,2012.

