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---------------------------------------------------------------------ABSTRACT------------------------------------------------------------- 
SDN (Software Defined Networking) is the networking architecture that has gained attention of researchers in 
recent past. It is the future of programmable networks. Traditional networks were very complex and difficult to 
manage. SDN is going to change this by offering a standard interface (OpenFlow) between the control plane and 
the networking devices (data plane). Its implementation is fully supported by software so that we can control the 
behavior of networking devices through programmatic control. This programmatic control provides various new 
ways to find breakpoints and failures in networking devices. Today SDN has become an important part of 
networking, so it is important to emulate its behavior. SDN support virtualization which makes it scalable and 
flexible. Data traffic resides in the data plane. The main function of intelligent controller is to decide the routing 
policy and manage the traffic in data plane. So effectively SDN emerges as a networking architecture that has the 
ability to solve all problems those were found in traditional architecture In this paper the authors discussed 
historical perspective of SDN, languages that support SDN, emulation tools, security issues with SDN and 
advantages that makes SDN suitable choice for today’s network. 
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1. INTRODUCTION 

The Software Defined Networking (SDN) is a new 
networking approach. The traditional networking 
architectures are not capable of fulfilling the changing 
needs and requirements of networking organizations and 
individual users. In traditional network it is very difficult 
to manage the network because network consists of 
heterogeneous hardware devices that support different 
protocols. SDN paradigm helps us to solve these problems 
by enabling the separation of the control plane from data 
plane. The concept of decoupling the control and data 
plane is not new, it has taken from early researches during 
early 2000[1].  
 
SDN is a new emerging networking architecture and 
provides the platform for the development or innovation of 
new services. The advantage of separating the control 
plane is that we can develop the control plane in software 
and can change the functionality of the hardware devices 
whenever needed. Early network used the 4D [2] and 
ethane [3] approach for the network control and 
management. To make the scalable network the 
architecture must be able to provide local controller. The 
main function of the local controllers is to run the 
applications close to underlying switches [4].  
 
To make any network scalable it must support 
virtualization and the SDN is a natural platform to support 
for virtualization [5]. We have various available 
controllers for SDN such as Beacon, NOX, POX, Onix, 

and Floodlight [6, 7, 8, 9, and 10]. The choice of particular 
controller depends upon the experience and knowledge of 
networks operators. SDN is fully programmable and 
whole intelligence lies in the centralized controller. There 
are number of available programming languages like 
Frenetic, FML, Procera, Flog and Pyretic to code for the 
intelligent controllers. The centralized intelligent 
controller is abstracted from the hardware devices that 
work on the data plane.  
 
The main function of the centralized controller is to 
manage the hardware devices through programmatic 
control. Through controller we can modify the behavior of 
hardware devices by changing the logic code of 
centralized controller. 
 
It is not possible for switches to pre-install all rules, 
because we use only one rule at a time and also switches 
do not have enough memory space. As controller decides 
particular routing policy, it implements that policy by 
instructing the switches to install that policy [12]. These 
rules and policies are based on the HFT (Hierarchical 
Flow Table) [11]. These policies help us to determine 
whether to forward the packet or to drop the packet by 
comparing the packet based on the values stored in the 
flow table. 
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Figure 1: Software Defined Networking A
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way is that switches decide their routes themselves 
(known as reactive) and other way, when first packet 
comes across ingress port. Ingress port send packet to the 
controller and then controller decides which route switches 
have to follow (known as proactive). Configuring the 
hardware devices through programmatic control makes the 
SDN flexible. But question comes, how we can make SDN 
scalable. 
  
We have various option of controller like NOX, FlowN, 
FlowVisor and Beacon etc. One of most commonly used 
controller is NOX. All of these controllers provide the 
programmable interface that supports a low-level and 
event based model in which programs control the task of 
arrival of packet, to drop the packet, or to forward the 
packet based on the decision made by the centralized 
controller. To make control plane scalable we must have 
better choice of controller such as ElastiCon [28]. Early 
controllers support the static mapping between the 
forwarding hardware devices and the intelligent controller 
where as ElastiCon support the dynamic mapping between 
the underlying switches and the controller. 
 
We can make SDN scalable by keeping the packet traffic 
in the data plane [29] that is abstracted from the controller 
in control plane. In order to efficiently handle the traffic 
flow, the switches must be able to take decision where to 
forward the packet. This is possible by having firmware 
installed in switches with silicon chips and inbuilt buffer 
storage. These switches are smart enough for making any 
decisions. When a packet arrives across switch in a 
network, the rules installed in the switches firmware tell 
the switch where to forward the packet. These switches are 
based on ASIC’s (Application Specific Integrated 
Circuits). Firmware is inbuilt software (set of programs) in 
switches which provides the ability to communicate with 
centralized controller.  
These switches also contain CPU to handle the data plane 
traffic [30]. The CPU contains the complete forwarding 
tables. Also other factor that makes SDN scalable is the 
ability of faster failure recovery. The programming 
language that support fast failure recovery is FatTire [31]. 
The most common and basic requirement of any network 
is the ability to tolerate and recover from failure. Same 
requirements are needed for SDN. In SDN we 
automatically recover from failure through centralized 
controller. Whenever the failure take place or switch stops 
working SDN is capable of changing the flow of traffic 
through programmatic control. To recover from failure in 
seconds the network must support multiple routing paths 
and must also be able to work with any kind of networking 
topology [32]. 

6.  TOOLS FOR SDN 
SDN is a new paradigm that facilitates the development of 
networks. In this section we provide introduction to SDN 
based tools such as emulators. 
6.1. Mininet  
Mininet [33] is an emulator that allows network to be 
emulated on single computer system. It configures and 

runs the same things that we find on real network such as 
links, switches, servers and packets. The emulated server 
runs logic codes rather than events. Emulator provides the 
artificial environment with artificial traffic comparable to 
the real network environment. Mininet is container based 
emulator (CBE) and support process level virtualization, 
which is lighter form of virtualization. Other examples of 
container based emulators are Netkit [34], CORE [35] and 
trellis [36]. 
6.2. DieCast 
DieCast [39] is very closer to the behavior of actual 
network and it uses very less no. of physical resources. 
Large network includes thousands of devices runs 
heterogeneous protocols and software configurations that 
are distributed across hundred of physical networks. 
DieCast does not focus on scaling of hardware resources 
like main memory and disk etc. 
6.3. ModelNet  
ModelNet [37] is a scalable emulator that provides the 
emulation of the network at a large scale. The main point 
that makes ModelNet different from other emulator, it 
focuses on the emulation of large topology of networks. In 
ModelNet we require lesser resources to emulate network 
[38]. The ModelNet includes five phases: Create, Distill, 
Assign, Bind and run. The emulation in ModelNet is based 
on real time therefore each packet come across the 
emulated network with equal time interval, with same 
delay and same rate of loss of packet as the actual 
network. 

7.  ADVANTAGES OF SDN 
Early networks were not built to meet the today’s rapidly 
changing requirements. Everything is evolving except the 
networking architecture. SDN has the ability to overcome 
the problems of conventional networking architecture. 
SDN networks are easily scalable as network grows 
because SDN provides us with the programmable 
interface. Networking hardware devices are increasing 
day-by-day that results in network growth, so for 
traditional network it is very tedious and costly task to 
configure all hardware devices manually. SDN is fully 
implemented in software and therefore it support 
programmable control to configure the hardware devices. 
Following are some of advantages of SDN: 
 
7.1. Global View  
SDN provides the global view of the network that helps us 
to simplify the network configuration, management and 
makes it available to the user who wants to use it. 
 
7.2. Flexible Traffic 
The main functionality of the intelligent controller is to 
programmatically configure hardware devices which 
makes the SDN flexible and more agile. Also we can 
change the functionality of controller according to change 
in traffic. 
 
7.3. Easily Programmable 
In SDN, control plane is easily programmable because it is 
separated from the data plane. Whenever we have to make 
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changes, we can change the functionality of control plane 
by changing the logic programming in control plane. 
7.4. Programmatically Configurable 
As SDN is fully implemented in software and it therefore 
configures the hardware devices through programmatic 
control. When the controller decides to implement 
particular policy, it instructs the hardware devices to 
install that packet forwarding policy through 
programmatic control. 
7.5. Faster Failure Recovery 
SDN support virtualization which provides end-to-end 
connectivity between links and node across network. So 
failure handling is much faster, the controller 
automatically checks for failure and handle them 
accurately. 
7.6. Platform for Innovation 
As SDN is a new networking paradigm, the separation of 
data and control plane which enables the chances for 
innovation of new applications and services. 

8. RESEARCH RELATED ISSUES WITH SDN 
SDN is a new concept in networking field. As SDN has 
advantages, there are also some issues. SDN consists of 
three layers where each layer requires its own level of 
protection. Centralized controller acts as the standard 
interface for the interaction between the applications and 
switches that works on the top and bottom layer of SDN 
architecture. The bottom layer includes network virtual 
device which is the emulation of physical switches. So we 
need some mechanism to secure the controller and 
network virtual device [40]. Also emerging networks are 
facing the problem of how to attain security to protect the 
enterprise as well as user data. The concept of 
virtualization has enabled new threats that must be 
addressed. Therefore the authors next presents account of 
the issues related to the security of SDN. They have 
segregated these issues into three categories as detailed 
below. 
 
8.1. Virtualization Security Issue 
Networking industries are stepping forward to support for 
virtualized applications with different risk factors on a 
single server. In virtualized networks packet traffic does 
not flow through physical network [41]. There are no 
obvious ways to manage or control the data traffic in 
virtualized networks. There are various services like 
firewalls, IDS, QOS etc. These services are of no use in 
virtualized networks. If the attacker in the one virtual 
network is able to detect the other virtual networks then it 
must destroy the illusion of separation [41]. The weaker 
network security makes the virtual network vulnerable. In 
order to prevent network from an attacker, we have some 
of solutions as given below. 
 
Solution: 
The layer and boundaries that manages and control the 
virtual network must be well secured. So we need some 
additional security for virtual networks like virtualized 
firewall which includes IPS, anti-malware, URL filtering 
and content blocking to control the threats. In SDN we can 

make virtual machine secure by providing additional 
security layer to the hypervisor. Some following schemes 
can be used to make virtual networks secure. 
8.1.1. Worm Detection 
Worms are serious threat to the networking infrastructure. 
They spread across network from one host to another in 
continuous manner. There are some techniques for the 
detection of worm and defend against worms. For worm 
detection we use the behavioral approach, automatic 
detection of worm is very challenging because it is 
difficult to predict what would be the next form of worm 
[42]. Another approach for the worm detection is the multi 
resolution approach [43] and threshold based mechanisms. 
 
8.1.2. Intruder Detection 
One of most important part of network security is the 
NIDS (Network Intrusion Detection System). It provide us 
the layer which help us to monitor the data traffic and 
identify the suspicious activity, whenever found it instruct 
the administrator to take some suitable action. SNORT 
[44] is a packet sniffer that is used for NIDS. SNORT 
helps to identify various attacks like buffer overflows, CGI 
attacks and Server Message Block probe etc. 
 
8.2. Controller Security Issue 
Control plane controller has offered several benefits to 
configure the networks. But there also some security 
issues related with controller. SDN centralized controller 
potentially have risks and threat compared to the 
conventional network architecture. What if an attacker 
tries to modify or hack the hardware devices in data plane? 
SDN is fully dependent on the intelligent controller, so we 
need some security mechanism to protect it from attacker. 
The southbound interface between the control plane and 
data plane is sensitive and without any security services, it 
affect the performance and integrity of the network [45]. 
So without security network becomes inefficient. 
 
Solution: 
Whenever attacker tries to change the functionality of 
underlying hardware devices or tries to capture 
information from the data packet, the centralized 
controller can restrict attacker by modifying the data path. 
We can make SDN controller secure using following 
security approaches: 
8.2.1. FortNOX 
FortNOX is the policy enforcement kernel. FortNOX [47] 
extends of NOX [7] controller by providing policy based 
flow rule enforcement. FortNOX support role based 
OpenFlow applications authentication through digital 
signatures. FortNOX enables NOX [7] to check flow rule 
contradiction in real time. It also uses the conflict 
resolution policy to accept or discard the rules. 
8.2.2. FRESCO 
FRESCO is a new security application development 
framework [46]. The main purpose of the FRESCO is to 
identify the various issues that speed up the composition 
of OpenFlow enabled security services. Various security 
applications can be easily implemented with FRESCO 
framework. Application layer and the security 
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enforcement kernel are the main components of the 
FRESCO and both are the integral part of the NOX [7] 
controller. The basic operating unit in FRESCO 
framework is known as module. FRESCO application 
extended through FRESCO API’s to provide two 
developer functions: 

•  Development environment. 
•  Resource controller. 

 
8.3. Controller Placement Problem 
SDN architecture placed the control logic over the external 
controller that helps us to configure the packet forwarding 
devices in data plane. This architecture with separate 
control plane improves the scalability, reliability and 
performance which were not possible in traditional 
architecture. There are many problems that occur in 
controller placement are as follows: 

� How controller placements affect latency? 
� How many controllers are needed? 

 
Solution: 
The solution to above problems is to have a single 
centralized controller. One controller location is sufficient 
to meet the requirements of network topology.  As we use 
the no. of controllers, it becomes difficult to manage them 
and also it is very costly to have more than one controller. 
Also controller should be placed so that we have minimum 
latency that results in efficient networks. 

9.  CONCLUSION  
SDN provides us the new way to implement networking. 
This paper describes how SDN architecture is the suitable 
approach to meet the rapidly changing requirements of 
networking organizations and customers. Fully 
programmatic functionality of SDN makes it flexible and 
hence scalable. 
In traditional networks it is impossible to achieve 
scalability and flexibility. The centralized controller can 
change the functionality of hardware devices by changing 
the routing policy through programmatic control. We do 
not need to change the hardware set up with changes in 
requirements. SDN is the latest concept in networking 
industries. It enhances the scope for further development 
in networking. It is the future of networking which allows 
us to build the cost effective and agile networks. As in 
SDN the whole dependence lies on the intelligent 
programmable controller that is on one hand beneficial for 
management and control purposes but it also has 
drawbacks, because controller is the main target for the 
attacks.  
Also virtual network in SDN does not have security layer 
to protect the network where as traditional networks are 
secure because we have various choices to protect network 
such as firewall, IDS, worm detector etc. SDN OpenFlow 
[12] interface is also vulnerable from security point of 
view. Also it has other issues like whether the 
functionality will reside in the control plane or both (data 
or control plane).  
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